'unexpected' trough. This trough, however, can be explained in the same way if the nitrogen lone pair orbital has a certain amount of p character.

The argument given above applies also to nitrogen atoms in molecules such as ammonia and hexamethylenetetramine. In fact the experimental data for these two compounds seem to substantiate a shift in the direction of the lone-pair electrons (Coppens & Hirshfeld, 1964). Careful comparative X-ray and neutrondiffraction studies on triazine are presently being undertaken in order to get more information on the direction and the size of this effect.

One other effect must be mentioned briefly. In our example we assumed that the N-O bond was not strongly ionic. It is easy to see that ionic character will impose a further displacement on the atomic charges. In the case of the π -bond, very little difference will be caused by polarity, since the extra charge will be in a $2p_{\pi}$ atomic orbit whose centre is at the oxygen nucleus. But in the case of the σ -bond, the extra charge is in a hybrid orbital, whose centroid does not coincide with the oxygen nucleus. Moreover, since oxygen is more electronegative than nitrogen, this will bring additional charge to the oxygen atom and reduce the asymmetry of charge. However this situation does not affect the conclusion of this note, though it would have to be taken into account in a detailed numerical study.

One of us (C.A.C.) would like to acknowledge the hospitality of the Chemistry Department at Fordham University, New York, during a visit to which most of the work here reported was done.

References

CADY, H. & LARSEN, A. C. (1965). Acta Cryst. 18, 485. COPPENS, P. & HIRSHFELD, F. L. (1964). Isr. J. Chem. 2, 117. COULSON, C. A. (1942). Trans. Faraday Soc. 38, 433.

- COULSON, C. A. (1942). Trans. Faraday Soc. 36, 455.
- COULSON, C. A. (1948). V. Henri Memorial Volume, Contribution a l'Étude de la Structure Moleculaire, p. 15. Liège: Desoer.
- COULSON, C. A. & ROGERS, M. T. (1961). J. Chem. Phys. 35, 593.
- DAWSON, B. (1965). Aust. J. Chem. 18, 595.
- HARTMAN, A. & HIRSHFELD, F. L. (1966). Acta Cryst. 20, 80.
- Mulliken, R. S., Rieke, C. A., Orloff, D. & Orloff, H. (1949). J. Chem. Phys. 17, 1248.
- O'CONNELL, A. M., RAE, A. I. M. & MASLEN, E. N. (1966). Acta Cryst. 21, 208.
- TROTTER, J. (1959). Canad. J. Chem. 37, 905.

Acta Cryst. (1967). 23, 720

Neue Absorptionsfaktortafeln für den Kreiszylinder

VON K.WEBER

Institut für Mineralogie der Technischen Universität, 1 Berlin 12, Hardenbergstr. 35, Deutschland

(Eingegangen am 23. Januar 1967)

The well known tables of absorption correction for cylinders (*International Tables for X-ray Crystallography*, Vol. II) have inaccuracies up to 2.5 %. A new table valid for $\mu R \leq 30$ with an accuracy better than 10^{-3} is given, and the principles of its calculation are described.

1. Einleitung

Die Möglichkeit, die Absorptionsfaktoren für elliptisch geformte Körper auf die des Kreiszylinders zurückzuführen (Weber, 1963), haben wir in einem Rechenprogramm verwendet. Als Basis dieses Programmes dient das von Bond (1959) für den Kreiszylinder angegebene Approximationspolynom (1).

Während des Programmtestes zeigte sich, dass das benutzte Polynom (1) bereits für kleine μR Approximationsfehler in der Grössenordnung 1% liefert. Die Fehler haben für $\theta = 0^{\circ}$ und $\theta = 90^{\circ}$ verschiedene Vorzeichen (Fig. 2). So findet man z.B. eine Abweichung von +0.5% für $\mu R = 1$ und $\theta = 0^{\circ}$. Die Genauigkeit sinkt auf rund $\pm 2,5\%$ ab für $\mu R=8$ bei $\theta=0^{\circ}$ (positives Vorzeichen) und bei $\theta=90^{\circ}$ (negatives Vorzeichen). Die Tabelle 5.3.5B des 2. Bandes der International Tables for X-ray Crystallography (1959) ist für $\mu R \le 8$ mit der Formel (1) berechnet und enthält daher für einige θ -Werte systematische Fehler dieser Grössenordnung. Angaben über die Tafelgenauigkeit fehlten bisher. Da einerseits heute die Messgenauigkeit der Reflexintensitäten die Grössenordnung 1% erreicht, andererseits die Tabelle gelegentlich zur Prüfung von Rechenprogrammen herangezogen wird, die der Absorptionskorrektur dienen (z.B. Coppens, Leiserowitz & Rabinovich, 1965), schien uns eine Neuberechnung der Tafel nützlich und wünschenswert zu sein. Im Ver-

Fig. 1. Gesamtheit aller Weglängen $\leq l_0$ am Kreisquerschnitt für die Beugungswinkel $\theta = 0^{\circ}$ (links) und $\theta = 90^{\circ}$ (rechts). Der schraffierte Teil der beiden Schnittfiguren enthält alle Flächenelemente \Box , deren Primär- und Sekundärstrahlweglängen zusammengenommen höchstens gleich l_0 betragen. P = Primär-, S = Sekundärstrahl.

rel. Tafelfehler $\theta = 90^{\circ}$ -10^{-1} *MBT5 N*=0 *N*=1 -10^{-2} *N*=0 *N*=2 -10^{-3} *Int. Tab.* m=2 -10^{-4} *MBT9* 0 10 20 30 μR

Fig. 2. Konvergenz der verschiedenen Näherungsverfahren für $\theta = 0^{\circ}$ und 90° . ---- Approximationspolynom (1) für die Teilungen $1/\Delta b = 10 \times 2^{N}$. —--- Tafelwerte der International Tables. Rechenprogramm *MBT*9 für die Teilung N=0. -.-- Integrationsprogramm *MBT*5 nach Gl. (10). Die 'genauen' Bezugswerte lieferte für $\theta = 0^{\circ}$ die Gl. (8) und für $\theta = 90^{\circ}$ die Gl. (1) mit der Teilung $1/\Delta b = 10 \times 2^{9}$.

lauf der Arbeit wurden auch an einigen Stellen der bisherigen ΔS -Tabelle (Tabelle 5.2.5A) Ungenauigkeiten festgestellt, deren Korrektur hier mitgeteilt ist.

2. Die Approximationsmethode nach Bond

Der Absorptionsfaktor $A(\theta)$ für den Kreiszylinder lässt sich nach Bond (1959) näherungsweise durch $A_{\Sigma}(\theta)$ darstellen. Es gilt:

$$A_{\Sigma}(\theta) = \sum_{k=1}^{n} \Delta S_{k}(\theta) \exp[-\mu R(k-1/2)\Delta b]$$

mit $\Delta b = 1/10$. (1)

In (1) sind alle Absorptionswege, deren Länge l in die kte Weglängenklasse (2) der Breite Δb fällt

$$(k-1)\Delta b \leq l/R \leq k \cdot \Delta b$$
 $k=1,2,\ldots n \leq 4/\Delta b$, (2)

durch eine mittlere Weglänge l_k ersetzt

$$l_k = (k-1/2)\Delta b \cdot R$$

und zu dem Gewicht ΔS_k zusammengefasst. *R* ist der Radius des Kreiszylinders und μ der lineare Schwächungskoeffizient.

Die relativen Häufigkeiten ΔS_k der Weglängen \overline{l}_k hängen vom Glanzwinkel θ ab. Für $\theta = 0^\circ$ und $\theta = 90^\circ$ kann man die ΔS_k mit Hilfe der Gleichung (3) durch Differenzenbildung bestimmen. Die Flächenanteile $F_{(l_0)}/R^2\pi$ enthalten alle Absorptionswege der Längen $\leq l_0$ (schraffierte Teile in Fig. 1). Aus Fig. 1 leitet man ab:

$$F(l_0)/R^2\pi = \begin{cases} (2\alpha - \sin 2\alpha)/\pi \\ \min l_0/2R = \sin \alpha \text{ für } \theta = 0^{\circ} \\ 1 - (2\alpha - \sin 2\alpha)/\pi \\ \min l_0/4R = \cos \alpha \text{ für } \theta = 90^{\circ}. \end{cases}$$
(3)

Für den allgemeinen Fall $\theta \neq 0^{\circ}$, 90° ist bisher keine geschlossene Darstellung der ΔS_k bekannt geworden. Bond hat daher diese ΔS_k durch Abzählen der Wegstrecken anhand eines engmaschigen, quadratischen Stützpunktgitters mit Hilfeeiner elektronischen Rechenmaschine ermittelt und die Ergebnisse in Tabelle 5.3.5A der *International Tables* (1959) Bd. 2 mitgeteilt. Eine

Tabelle 1. Korrekturen zur Tab. 5.3.5A der International Tables Bd. 2, soweit sie den Rundungsfehler von \pm 0,0001 überschreiten

l_k	$\theta =$	=15°	$\theta =$	= 20 °	$\theta =$	=25°	$\theta =$	= 30°	$\theta = 35^{\circ}$		
	alt	neu	alt	neu	alt	neu	alt	neu	alt	neu	
≤1·55 ≤1·65					0·0414 0·0510	0·0416 0·0506					
≤ 1.75							0.0519	0.0521			
$ \leq 1.85 \\ \leq 1.95 \\ \leq 2.05 $	0·1154 0·1967 0·2454	0·1162 0·1935 0·2478	0·1519 0·2437	0·1516 0·2439	0.1180	0.1179	0·0595 0·0880	0·0621 0·0853	0∙0650 0•0816	0∙0649 0∙0813	
$ \leq 2.15 \\ \leq 2.25 \\ \leq 2.35 $			0.0722	0.0725	0·1867 0·0129	0·1868 0·0131	0·1318 0·1468	0·1343 0·1442	0·0864 0·0956 0·1103	0·0865 0·0957 0·1104	
≤2·45									0.0478	0.0480	

Nachberechnung dieser Tabelle, deren Genauigkeit hier nicht ausreichte (siehe dazu Fig. 3), zeigte, dass – von Rundungsfehlern abgesehen – einige Werte einer Korrektur bedurften. Sie sind in Tabelle 1 zusammengestellt.

Zur Verbesserung der Konvergenz war es notwendig, die Bondsche Methode der ΔS_k -Berechnung in einigen Punkten zu modifizieren.

Die Nachberechnung ist an einem rechteckigen Stützpunktgitter mit der Maschenhöhe $\Delta y = R/1000$ und variabler Maschenbreite Δx bei insgesamt $4R/\Delta b = 80$ Wegstreckenklassen ausgeführt. Der Grundwert für die Abszissenteilung ist $\Delta_0 x = R/50$. Die Berechnung beruht auf der folgenden Vorschrift:

(a) Ist der Klassenabstand der Wegstrecken zweier in x-Richtung benachbarter Punkte grösser als die Einheit 4R/80, dann werden – unter Festhalten des rechten Punktes – durch fortgesetztes Halbieren von Δx solange Zwischenpunkte eingeschoben, bis die Wegstrecken zweier Nachbarpunkte in benachbarte oder in dieselbe Klasse fallen.

Fig. 3. Einfluss der Genauigkeit der ΔS_k auf die berechneten Absorptionsfaktoren für den Fall $\mu R=4$. – Es sind Differenzkurven $\Delta = (1/A_{MBT9} - 1/A_{MBT5})$ zwischen den Rechenverfahren nach Gl. (9) (Programm *MBT5*) und der Gl.(6) (Programm *MBT9*) dargestellt. Die ΔS_k finden nur im Programm *MBT9* Verwendung. — ΔS_k -Werte der *International Tables* (Tabelle 5.3.5A). ----- neu berechnete ΔS_k -Werte. Die mit *MBT5* und *MBT9* bezeichneten θ -Bereiche zeigen an, in welchen Bereichen diese Verfahren genauer als 2×10^{-4} sind.

Tabelle 2. Absorptionsfaktortafeln für den Kreiszylinder

Die Spalte $\theta = 0^{\circ}$ ist mit GI.(8) berechnet. Spalte $\theta = 5^{\circ}$ ist für $\mu R \le 4$ nach GI.(9) (Programm *MBT5*) berechnet. Alle übrigen Tabellenwerte sind unter Benutzung der Polynome vierten Grades $g_k(l)$ durch Integration nach der Simpsonregel berechnet; für $\theta \le 25^{\circ}$ wurde eine Intervallteilung $1/\Delta b = 20$ (N=1), für $\theta > 25^{\circ}$ die Teilung $1/\Delta b = 10$ (N=0) benutzt.

μR	⊖ =0 ⁰	5 ⁰	10 ⁰	15 ⁰	20 ⁰	2 5 ⁰	30 ⁰	35 ⁰	40 ⁰	45 ⁰	50 ⁰	55 ⁰	60 ⁰	65 ⁰	70 ⁰	75 ⁰	80 ⁰	85 ⁰	90 ⁰	μR
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.0
.1	1.184	1.184	1.184	1.184	1.184	1.184	1.183	1.183	1.182	1.182	1.181	1.181	1.180	1.180	1.179	1.179	1.179	1.179	1.178	.1
.2	1.401	1.401	1.400	1.400	1.398	1.397	1.395	1.393	1.391	1.389	1.387	1.384	1.382	1.380	1.378	1.376	1.375	1.374	1.374	.2
.3	1.655	1.654	1.653	1.651	1.648	1.644	1.640	1.635	1.629	1.623	1.617	1.611	1.605	1.599	1.595	1.591	1.588	1.586	1.585	.3
.4	1.952	1.951	1.949	1.944	1.938	1.930	1.920	1.910	1.898	1.886	1.873	1.861	1.850	1.839	1.829	1.822	1.816	1.812	1.811	.4
.5 .6 .7 .8	2.300 2.705 3.176 3.724 4.358	2.298 2.702 3.171 3.716 4.346	2.293 2.693 3.156 3.692 4.310	2.284 2.678 3.132 3.654 4.251	2.272 2.657 3.098 3.602 4.174	2.257 2.632 3.058 3.539 4.082	2.240 2.602 3.011 3.469 3.979	2.221 2.570 2.961 3.394 3.872	2.200 2.536 2.908 3.317 3.763	2.178 2.501 2.855 3.240 3.656	2.156 2.466 2.803 3.166 3.554	2.135 2.433 2.753 3.095 3.459	2.115 2.401 2.707 3.031 3.372	2.097 2.373 2.665 2.973 3.295	2.081 2.348 2.630 2.924 3.230	2.068 2.328 2.600 2.884 3.177	2.058 2.313 2.579 2.854 3.138	2.052 2.303 2.565 2.836 3.114	2.050 2.300 2.561 2.830 3.106	.5 .6 .7 .8 .9
1.0	5.091	5.073	5.019	4.933	4.820	4.688	4.544	4.395	4.246	4.102	3.967	3.841	3.729	3.630	3.546	3.479	3.430	3.399	3.389	1.0
.1	5.936	5.909	5.831	5.707	5.547	5.363	5.165	4.964	4.766	4.578	4.402	4.243	4.100	3.976	3.872	3.788	3.727	3.689	3.677	.1
.2	6.908	6.869	6.758	6.583	6.361	6.109	5.844	5.579	5.322	5.081	4.860	4.661	4.484	4.332	4.205	4.104	4.030	3.984	3.968	.2
.3	8.022	7.968	7.812	7.569	7.267	6.930	6.581	6.238	5.913	5.611	5.338	5.094	4.881	4.698	4.546	4.425	4.337	4.282	4.264	.3
.4	9.295	9.220	9.005	8.675	8.269	7.826	7.377	6.943	6.537	6.166	5.834	5.542	5.288	5.071	4.892	4.751	4.647	4.584	4.562	.4
.5	10.75	10.64	10.35	9.908	9.373	8.801	8.230	7.690	7.192	6.744	6.348	6.002	5.704	5.452	5.244	5.081	4.961	4.888	4.863	.5
.6	12.40	12.26	11.86	11.28	10.58	9.853	9.141	8.478	7.877	7.344	6.877	6.474	6.129	5.839	5.601	5.414	5.278	5.194	5.165	.6
.7	14.27	14.08	13.56	12.79	11.90	10.98	10.11	9.305	8.590	7.963	7.421	6.956	6.561	6.231	5.962	5.750	5.596	5.502	5.470	.7
.8	16.38	16.14	15.44	14.45	13.32	12.19	11.13	10.17	9.328	8.601	7.977	7.447	7.000	6.628	6.326	6.089	5.917	5.811	5.775	.8
.9	18.76	18.44	17.54	16.27	14.86	13.47	12.20	11.07	10.09	9.254	8.545	7.946	7.445	7.030	6.693	6.430	6.239	6.122	6.082	.9
2.0	21.44	21.01	19.85	18.25	16.50	14.83	13.31	12.00	10.87	9.922	9.123	8.453	7.895	7.435	7.064	6.774	6.563	6.434	6.389	2.0
.1	24.43	23.88	22.39	20.39	18.26	16.25	14.47	12.96	11.67	10.60	9.710	8.966	8.350	7.844	7.436	7.119	6.888	6.746	6.698	.1
.2	27.76	27.05	25.18	22.69	20.12	17.74	15.68	13.94	12.49	11.30	10.30	9.485	8.809	8.256	7.811	7.465	7.214	7.060	7.007	.2
.3	31.46	30.57	28.22	25.16	22.08	19.29	16.92	14.95	13.33	12.00	10.91	10.01	9.272	8.670	8.188	7.813	7.541	7.374	7.316	.3
.4	35.57	34.44	31.51	27.80	24.13	20.90	18.20	15.98	14.18	12.71	11.52	10.54	9.738	9.087	8.566	8.162	7.869	7.688	7.626	.4
.5 .6 .7 .8	40.10 45.08 50.55 56.53 63.04	38.68 43.32 48.37 53.85 59.78	35.07 38.90 43.00 47.37 52.02	30.60 33.55 36.66 39.92 43.32	26.29 28.53 30.85 33.25 35.73	22.56 24.28 26.04 27.84 29.68	19.50 20.84 22.21 23.59 25.00	17.03 18.10 19.19 20.29 21.40	15.04 15.92 16.80 17.69 18.59	13.43 14.16 14.90 15.64 16.39	12.13 12.75 13.38 14.01 14.64	11.07 11.61 12.15 12.69 13.24	10.21 10.68 11.15 11.63 12.11	9.506 9.927 10.35 10.77 11.20	8.946 9.328 9.710 10.09 10.48	8.512 8.863 9.215 9.568 9.922	8.197 8.527 8.857 9.187 9.518	8.003 8.319 8.635 8.951 9.267	7.936 8.247 8.558 8.869 9.181	.5 .6 .7 .8 .9
3.0	70.12	66.17	56.93	46.86	38.27	31.55	26.43	22.52	19.50	17.14	15.27	13.78	12.59	11.63	10.86	10.28	9.849	9.584	9.492	3.0
.1	77.78	73.02	62.12	50.53	40.87	33.46	27.88	23.66	20.42	17.90	15.91	14.33	13.07	12.05	11.25	10.63	10.18	9.901	9.804	.1
.2	86.05	80.36	67.56	54.32	43.53	35.40	29.34	24.80	21.34	18.66	16.56	14.89	13.55	12.48	11.64	10.99	10.51	10.22	10.12	.2
.3	94.97	88.20	73.26	58.22	46.25	37.36	30.82	25.96	22.27	19.43	17.20	15.44	14.03	12.91	12.03	11.34	10.85	10.54	10.43	.3
.4	104.5	96.53	79.21	62.23	49.01	39.34	32.31	27.12	23.20	20.19	17.85	15.99	14.52	13.34	12.42	11.70	11.18	10.85	10.74	.4
.5 .6 .7 .8	114.8 125.7 137.4 149.8 163.0	105.4 114.7 124.6 134.9 145.8	85.40 91.83 98.47 105.3 112.4	66.34 70.55 74.84 79.21 83.66	51.81 54.66 57.54 60.46 63.41	41.35 43.38 45.42 47.49 49.57	33.82 35.33 36.85 38.39 39.93	28.29 29.46 30.64 31.83 33.02	24.14 25.08 26.02 26.97 27.93	20.97 21.74 22.52 23.30 24.08	18.50 19.15 19.80 20.46 21.11	16.55 17.11 17.67 18.23 18.79	15.01 15.49 15.98 16.47 16.96	13.78 14.21 14.64 15.08 15.51	12.80 13.19 13.59 13.98 14.37	12.06 12.41 12.77 13.13 13.49	11.51 11.84 12.18 12.51 12.85	11.17 11.49 11.81 12.13 12.44	11.05 11.37 11.68 11.99 12.30	.5 .6 .7 .8 .9
4.0	177.0	157.2	119.7	88.17	66.39	51.66	41.48	34.22	28.88	24.86	21.77	19.36	17.45	15.95	14.76	13.85	13.18	12.76	12.62	4.0
.1	191.7	169.1	127.1	92.76	69.39	53.76	43.04	35.42	29.84	25.65	22.43	19.92	17.94	16.38	15.15	14.21	13.52	13.08	12.93	.1
.2	207.3	181.5	134.8	97.40	72.42	55.88	44.60	36.62	30.80	26.43	23.09	20.49	18.44	16.82	15.54	14.56	13.85	13.40	13.24	.2
.3	223.7	194.5	142.6	102.1	75.47	58.01	46.17	37.83	31.76	27.22	23.75	21.05	18.93	17.25	15.94	14.92	14.19	13.72	13.56	.3
.4	240.9	207.9	150.5	106.9	78.55	60.15	47.75	39.05	32.73	28.01	24.41	21.62	19.42	17.69	16.33	15.28	14.52	14.04	13.87	.4
.5 .6 .7 .8	259.0 278.0 297.9 318.7 340.4	221.8 236.2 251.2 266.6 282.5	158.7 166.9 175.4 183.9 192.6	111.7 116.5 121.4 126.4 131.4	81.65 84.77 87.90 91.06 94.23	62.31 64.47 66.64 68.82 71.01	49.33 50.92 52.52 54.12 55.73	40.27 41.49 42.71 43.94 45.17	33.70 34.67 35.64 36.62 37.59	28.81 29.60 30.39 31.19 31.99	25.08 25.74 26.41 27.07 27.74	22.19 22.75 23.32 23.89 24.46	19.92 20.41 20.91 21.40 21.90	18.13 18.57 19.00 19.44 19.88	16.73 17.12 17.51 17.91 18.30	15.64 16.00 16.37 16.73 17.09	14.86 15.19 15.53 15.86 16.20	14.36 14.68 15.00 15.32 15.64	14.18 14.49 14.81 15.12 15.43	.5 .6 .7 .8 .9

(b) Ist der Klassenabstand benachbarter Punkte gleich Null, dann ist der Gewichtsbeitrag zu dieser Klasse proportional dem Abszissenabstand Δx der beiden Punkte.

(c) Unterscheiden sich die Wegstreckenklassen benachbarter Punkte um eine Einheit, dann werden die Gewichtsbeiträge zu beiden Klassen durch zweimalige lineare Interpolation bestimmt.

(d) Die Schnittpunkte zwischen den Horizontalen $k \Delta y = \text{const}$ und dem Kreisumfang werden zusätzlich als Gitterpunkte betrachtet.

3. Der Approximationsfehler $(A_{\Sigma} - A)$

Eine grobe Einschachtelung des wahren Absorptionsfaktors $A(\theta)$ erhält man mit (4). Ersetzt man in der Absorptionssumme (1) vorübergehend die Wege \bar{l}_k einmal durch die jeweils kleinste Weglänge $(k-1)\Delta b$ und ein zweites Mal durch die jeweils grösste Weglänge $k\Delta b$ der Klassen (2), so ist der damit berechnete Absorptionsfaktor im ersten Falle sicher grösser als A, im zweiten Falle sicher kleiner als A. Man führt die kleinsten bzw. die grössten Weglängen in Gl.(1) ein, indem man beide Seiten dieser Gleichung mit $\exp(\pm \mu R\Delta b/2)$ multipliziert. Es folgt:

$$A_{\Sigma} \exp(-\mu R \Delta b/2) \le A(\theta) \le A_{\Sigma} \exp(\mu R \Delta b/2) .$$
 (4)

20⁰

25⁰

30⁰

Für $\mu R \rightarrow 0$ oder für wachsende Intervallteilung $1/\Delta b$ konvergieren die A_{Σ} gegen den wahren Wert A.

Unter Benutzung von Gl.(3) kann man jetzt, wenigstens für die Tabellenränder $\theta = 0^{\circ}$ und $\theta = 90^{\circ}$, die Konvergenz von (1) mit zunehmend feinerer Klasseneinteilung numerisch verfolgen. Ergebnisse für die Teilungen $1/\Delta b = 10 \cdot 2^N$ mit N = 0, 1, 2 sind in Fig. 2 dargestellt. Der Approximationsfehler der in den International Tables benutzten Teilung N=0 erreicht bei $\mu R = 8$ einen Betrag von -2,6% für $\theta = 0^{\circ}$ bzw. von +2,7% für $\theta=90^\circ$. Die schwache Konvergenz veranlasste Bond, die Berechnung der Tabelle für grössere μR mit einem anderen Verfahren fortzusetzen.

Eine Verfeinerung der Intervallteilung um den Faktor 2 erhöht die Genauigkeit ziemlich gleichmässig über μR und θ um einen Faktor 3. Um den Fehler jedoch auch für grosse μR unter 0,5% zu halten – wie es für ein einheitliches Absorptionsprogramm wünschenswert ist - hätte man die Anzahl der Summenglieder ΔS_k beträchtlich steigern müssen. Das folgende Verfahren bietet dagegen einige Vorteile.

4. Verbessertes Verfahren unter Weiterbenutzung der ΔS_k (Programmbezeichnung MBT9)

Die Approximationsungenauigkeit des Ausdruckes (1) l durch die Asymmetrie der Exponential-

70⁰

75⁰

80⁰ 850 90⁰

65⁰

55⁰ 60⁰

40⁰

35⁰

Tabelle 2 (Fortsetzung)

45⁰ 50⁰

5.0 .1 .2 .3 .4	363.0 386.7 411.3 436.8 463.4	298.8 315.7 333.0 350.8 369.0	201.4 210.4 219.4 228.6 237.9	136.4 141.4 146.5 151.7 156.8	97.42 100.6 103.8 107.1 110.3	73.21 75.42 77.63 79.86 82.09	57.34 58.95 60.57 62.19 63.82	46.40 47.64 48.88 50.12 51.36	38.57 39.55 40.53 41.52 42.50	32.79 33.59 34.39 35.19 35.99	28.41 29.08 29.75 30.42 31.09	25.03 25.60 26.17 26.75 27.32	22.39 22.89 23.39 23.89 24.38	20.32 20.76 21.20 21.64 22.08	18.70 19.09 19.49 19.88 20.28	17.45 17.81 18.17 18.53 18.89	16.53 16.87 17.21 17.54 17.88	15.95 16.27 16.59 16.91 17.23	15.75 16.06 16.37 16.69 17.00	5.0 .1 .2 .3
.5 .6 .7 .8 .9	491.1 519.7 549.5 580.3 612.2	387.7 406.8 426.4 446.4 466.8	247.2 256.7 266.3 275.9 285.7	162.0 167.3 172.5 177.8 183.2	113.6 116.9 120.2 123.5 126.8	84.32 86.57 88.82 91.08 93.34	65.45 67.09 68.73 70.37 72.02	52.61 53.85 55.10 56.36 57.61	43.49 44.47 45.46 46.45 47.44	36.79 37.60 38.40 39.21 40.02	31.76 32.43 33.10 33.78 34.45	27.89 28.46 29.04 29.61 30.19	24.88 25.38 25.88 26.38 26.88	22.52 22.96 23.40 23.84 24.28	20.68 21.07 21.47 21.86 22.26	19.26 19.62 19.98 20.34 20.70	18.22 18.55 18.89 19.23 19.56	17.55 17.87 18.19 18.51 18.83	17.31 17.63 17.94 18.26 18.57	•5 •6 •7 •8
6.0 .1 .2 .3 .4	645.2 679.3 714.6 751.1 788.7	487.7 509.0 530.7 552.8 575.4	295.6 305.5 315.5 325.6 335.8	188.5 193.9 199.3 204.7 210.2	130.1 133.5 136.8 140.2 143.6	95.61 97.89 100.2 102.5 104.7	73.67 75.32 76.97 78.63 80.30	58.87 60.13 61.39 62.65 63.91	48.44 49.43 50.42 51.42 52.42	40.83 41.63 42.44 43.25 44.06	35.12 35.80 36.47 37.15 37.82	30.76 31.34 31.91 32.49 33.06	27.37 27.87 28.37 28.87 29.37	24.73 25.17 25.61 26.05 26.49	22.66 23.05 23.45 23.85 24.24	21.07 21.43 21.79 22.15 22.52	19.90 20.24 20.57 20.91 21.25	19.15 19.47 19.79 20.11 20.43	18.88 19.20 19.51 19.82 20.14	6.0 .1 .2 .3
.5 .6 .7 .8 .9	827.6 867.7 909.0 951.6 995.4	598.3 621.6 645.4 669.5 694.0	346.1 356.4 366.8 377.3 387.8	215.7 221.2 226.7 232.3 237.9	147.0 150.4 153.8 157.2 160.6	107.0 109.4 111.7 114.0 116.3	81.96 83.63 85.30 86.97 88.65	65.17 66.44 67.71 68.98 70.25	53.41 54.41 55.41 56.41 57.41	44.87 45.69 46.50 47.31 48.12	38.50 39.18 39.85 40.53 41.21	33.64 34.21 34.79 35.37 35.94	29.87 30.37 30.88 31.38 31.88	26.93 27.38 27.82 28.26 28.70	24.64 25.04 25.44 25.83 26.23	22.88 23.24 23.61 23.97 24.33	21.59 21.92 22.26 22.60 22.93	20.75 21.07 21.39 21.72 22.04	20.45 20.76 21.08 21.39 21.71	.5 .6 .7 .8
7.0 .1 .2 .3 .4	1041 1087 1135 1184 1235	718.8 744.1 769.7 795.6 822.0	398.5 409.1 419.9 430.7 441.6	243.5 249.1 254.7 260.4 266.1	164.1 167.5 171.0 174.4 177.9	118.6 120.9 123.3 125.6 127.9	90.32 92.00 93.69 95.37 97.06	71.52 72:79 74.07 75.34 76.62	58.41 59.42 60.42 61.42 62.43	48.94 49.75 50.57 51.38 52.20	41.89 42.56 43.24 43.92 44.60	36.52 37.10 37.68 38.25 38.83	32.38 32.88 33.38 33.88 34.38	29.15 29.59 30.03 30.48 30.92	26.63 27.03 27.43 27.82 28.22	24.69 25.06 25.42 25.78 26.15	23.27 23.61 23.95 24.29 24.62	22.36 22.68 23.00 23.32 23.64	22.02 22.33 22.65 22.96 23.27	7.0 .1 .2 .3 .4
.5 .6 .7 .8	1286 1340 1395 1451 1508	848.6 875.6 903.0 930.7 958.7	452.5 463.5 474.6 485.7 496.9	271.8 277.5 283.3 289.0 294.8	181.4 184.9 188.4 191.9 195.4	130.3 132.6 135.0 137.3 139.7	98.74 100.4 102.1 103.8 105.5	77.90 79.18 80.46 81.74 83.02	63.43 64.44 65.45 66.45 67.46	53.01 53.83 54.64 55.46 56.28	45.28 45.96 46.64 47.32 48.00	39.41 39.99 40.57 41.15 41.73	34.89 35.39 35.89 36.39 36.89	31.36 31.81 32.25 32.69 33.14	28.62 29.02 29.42 29.81 30.21	26.51 26.88 27.24 27.60 27.97	24.96 25.30 25.64 25.97 26.31	23.96 24.28 24.60 24.92 25.24	23.59 23.90 24.22 24.53 24.84	.5 .6 .7 .8 .9
8.0 .1 .2 .3 .4	1568 1628 1690 1754 1820	987.1 1016 1045 1074 1104	508.2 519.4 530.8 542.2 553.6	300.6 306.4 312.3 318.1 324.0	198.9 202.4 206.0 209.5 213.1	142.1 144.4 146.8 149.2 151.5	107.2 108.9 110.6 112.3 114.0	84.31 85.59 86.87 88.16 89.45	68.47 69.48 70.49 71.50 72.51	57.10 57.91 58.73 59.55 60.37	48.68 49.36 50.04 50.72 51.40	42.30 42.88 43.46 44.04 44.62	37.40 37.90 38.40 38.90 39.41	33.58 34.02 34.47 34.91 35.35	30.61 31.01 31.41 31.81 32.20	28.33 28.69 29.06 29.42 29.79	26.65 26.99 27.33 27.66 28.00	25.56 25.88 26.20 26.52 26.85	25.16 25.47 25.79 26.10 26.41	8.0 .1 .2 .3
.5 .6 .7 .8	1886 1955 2025 2097 2170	1134 1164 1194 1225 1256	565.1 576.7 588.3 599.9 611.6	329.9 335.8 341.7 347.6 353.6	216.6 220.2 223.8 227.3 230.9	153.9 156.3 158.7 161.1 163.4	115.7 117.4 119.1 120.9 122.6	90.74 92.02 93.31 94.60 95.89	73.52 74.53 75.54 76.56 77.57	61.19 62.01 62.83 63.65 64.47	52.08 52.77 53.45 54.13 54.81	45.20 45.78 46.36 46.94 47.52	39.91 40.41 40.91 41.42 41.92	35.80 36.24 36.69 37.13 37.57	32.60 33.00 33.40 33.80 34.20	30.15 30.51 30.88 31.24 31.61	28.34 28.68 29.02 29.36 29.69	27.17 27.49 27.81 28.13 28.45	26.73 27.04 27.35 27.67 27.98	.5 .6 .7 .8
9.0 .1 .2 .3 .4	2245 2322 2400 2481 2563	1288 1319 1351 1383 1416	623.4 635.1 647.0 658.8 670.8	359.5 365.5 371.5 377.5 383.5	234.5 238.1 241.7 245.3 248.9	165.8 168.2 170.6 173.0 175.4	124.3 126.0 127.7 129.4 131.1	97.19 98.48 99.77 101.1 102.4	78.58 79.60 80.61 81.62 82.64	65.29 66.11 66.93 67.75 68.57	55.49 56.18 56.86 57.54 58.23	48.10 48.68 49.26 49.84 50.42	42.42 42.93 43.43 43.93 44.44	38.02 38.46 38.91 39.35 39.80	34.60 35.00 35.39 35.79 36.19	31.97 32.33 32.70 33.06 33.43	30.03 30.37 30.71 31.05 31.39	28.77 29.09 29.41 29.73 30.05	28.30 28.61 28.92 29.24 29.55	9.0 .1 .2 .3
.5 .6 .7 .8 .9	2646 2732 2819 2908 2999	1448 1481 1515 1548 1582	682.7 694.7 706.8 718.8 730.9	389.6 395.6 401.6 407.7 413.8	252.5 256.1 259.7 263.4 267.0	177.8 180.2 182.6 185.0 187.4	132.9 134.6 136.3 138.0 139.7	103.7 104.9 106.2 107.5 108.8	83.65 84.67 85.69 86.70 87.72	69.40 70.22 71.04 71.86 72.69	•58.91 59.59 60.28 60.96 61.64	51.00 51.58 52.17 52.75 53.33	44.94 45.44 45.95 46.45 46.96	40.24 40.69 41.13 41.57 42.02	36.59 36.99 37.39 37.79 38.19	33.79 34.15 34.52 34.88 35.25	31.72 32.06 32.40 32.74 33.08	30.37 30.70 31.02 31.34 31.66	29.87 30.18 30.49 30.81 31.12	.6 .7 .8

θ=0⁰

10⁰

5⁰

15⁰

funktion als auch - und dies vorwiegend für kleine Glanzwinkel θ – durch die asymmetrische Verteilung der Weglängenhäufigkeiten innerhalb der ΔS_k bestimmt. Es lässt sich daher eine beträchtliche Genauigkeitssteigerung erzielen, wenn man die mittlere Weglänge des kten Intervalles durch eine Weglängenverteilungsfunktion $g_k(l)$ ersetzt. Die g_k kann man als Polynome vom Grade *m* ansetzen:

$$g_k(l) = \sum_{i=0}^m a_i l^i \, .$$

Man gewinnt sie durch gleichzeitiges Betrachten der links und rechts zu ΔS_k symmetrisch liegenden, benachbarten Flächenbeiträge. Mit der Bedingung (5)

$$\sum_{i=k-j/2}^{i=k+h/2} \Delta S_i = \int_{(k-j/2)\Delta b}^{(k+h/2)\Delta b} g_k(l) dl \quad h, j = 0, 2, 4 , \qquad (5)$$

welche der Erhaltung der Flächenbeiträge entspricht, sind die Koeffizienten a_i des Polynoms g_k bestimmt. Durch geeignete Wahl von j und h kann man die Berechnung der ai in gerade und ungerade Terme aufspalten. Man findet:

$$a_{4} = (\Delta S_{k-2} - 4\Delta S_{k-1} + 6\Delta S_{k} - 4\Delta S_{k+1} + \Delta S_{k+2})/(24\Delta b^{5})$$

$$a_{2} = (\Delta S_{k-1} - 2\Delta S_{k} + \Delta S_{k+1})/(2\Delta b^{3}) - 1, 5a_{4}\Delta b^{2}$$

$$a_{0} = \Delta S_{k}/\Delta b - a_{4}\Delta b^{4}/80 + a_{2}\Delta b^{2}/12$$
(6)
$$a_{3} = (\Delta S_{k-2} - 2\Delta S_{k-1} + 2\Delta S_{k+1} - \Delta S_{k+2})/(12\Delta b^{4})$$

$$a_{1} = (\Delta S_{k-1} - \Delta S_{k+1})/(2\Delta b^{2}) - 1, 25a_{3}\Delta b^{2}.$$

Mit Ausnahme der beiden ersten und der beiden letzten Klassen (2), für welche die g_k notwendigerweise asymmetrisch bestimmt sind, wird die *l*-Verteilung durch (6) hinreichend genau beschrieben. Für die letzte Klasse, in welcher die grössten l liegen, werden die Gleichungen (6) etwas komplizierter, da die Endklasse im allgemeinen schmaler als Δb . R ist.

Der Absorptionsbeitrag der kten Weglängenklasse wird schliesslich durch Integration nach der Simpsonregel numerisch bestimmt, wobei eine Intervallteilung von 6 ausreicht.

$$A_{MBT9}(\theta) = \Sigma k \int g_k(l) \exp(-\mu l) dl \quad \text{mit} \quad dl = \Delta b/6.$$

Die numerischen Ergebnisse mit der Teilung N=0und einem Polynom vom Grade m=4 zeigen für den Bereich $\mu R \le 30$ und $0 \le \theta \le 90^{\circ}$ Approximationsungenauigkeiten, die meist unter 10⁻⁴ liegen. Nur für kleine θ und kleine μR steigt der Fehler auf 0,5% an (Fig. 2, Kurven *MBT*9). Er rührt von den Beiträgen ΔS_k der letzten Glieder her; es sind die durch g_k weniger gut beschriebenen Randpunkte, welche für kleine θ und kleine μR die grössten Beiträge stellen und dabei ausserdem mit l am stärksten variieren. Eine Verfeinerung der Intervallteilung auf N=1 hält auch diesen Fehler unter 1 %. Wir haben diese Intervallteilung (N=1) für den θ -Bereich $\leq 25^{\circ}$ zur Neuberechnung der Tafel beibehalten. Die Tafelungenauigkeit bleibt daher für alle θ und μR mit Sicherheit unter 1%. Hätte man statt

Tabelle 2 (Fortsetzung)

μR	0-0 ⁰	5 ⁰	10 ⁰	15 ⁰	20 ⁰	2 5 ⁰	30 ⁰	35 ⁰	40 ⁰		45 ⁰	50 ⁰	55 ⁰	60 ⁰	65 ⁰	70 ⁰	75 ⁰	80 ⁰	8 5 ⁰	90 ⁰
10.0 .5 11.0 .5	3 092 3 585 4 128 4 722	1 616 1 789 1 967 2 151	743.1 804.4 866.6 929.6	419.9 450.5 481.4 512.5	270.6 288.9 307.2 325.6	189.9 201.9 214.1 226.2	141.5 150.1 158.8 167.4	110.1 116.6 123.1 129.7	88.73 93.82 98.92 104.0	ł	73.51 77.63 81.75 85.87	62.33 65.75 69.17 72.60	53.91 56.82 59.72 62.63	47.46 49.98 52.50 55.02	42.46 44.69 46.91 49.14	38.59 40.58 42.58 44.58	35.61 37.43 39.26 41.08	33.42 35.11 36.80 38.49	31.98 33.59 35.19 36.80	31.44 33.01 34.58 36.15
12.0 .5 13.0 .5	5 370 6 075 6 839 7 664	2 339 2 532 2 729 2 929	993.3 1 058 1 123 1 188	543.8 575.2 606.9 638.7	344.1 362.6 381.3 399.9	238.4 250.7 269.9 275.2	176.1 184.8 193.6 202.3	136.2 142.7 149.3 155.8	109.1 114.2 119.4 124.5	10	90.00 94.13 98.26 02.4	76.02 79.45 82.88 86.32	65.55 68.46 71.37 74.29	57.55 60.07 62.59 65.12	51.36 53.59 55.82 58.05	46.58 48.57 50.57 52.57	42.90 44.73 46.55 48.38	40.19 41.88 43.58 45.27	38,40 40.01 41.62 43.22	37.72 39.29 40.86 42.43
14.0 .5 15.0 .5	8 553 9 508 10 530 11 620	3 133 3 341 3 551 3 765	1 254 1 321 1 388 1 455	670.6 702.7 734.9 767.2	418.7 437.4 456.2 475.1	287.5 299.8 312.1 324.5	211.0 219.8 228.6 237.3	162.4 168.9 175.5 182.1	129.6 134.7 139.9 145.0	10 11 11	D6.5 10.7 14.8 19.0	89.75 93.19 96.62 100.1	77.20 80.12 83.04 85.95	67.65 70.17 72.70 75.23	60.27 62.50 64.73 66.96	54.57 56.57 58.57 60.57	50.20 52.02 53.85 55.67	46.97 48.66 50.35 52.05	44.83 46.43 48.04 49.65	44.00 45.57 47.14 48.71
16.0 .5 17.0 .5	12 790 14 030 15 350 16 750	3 981 4 200 4 421 4 644	1 522 1 590 1 659 1 727	799.5 832.0 864.5 897.1	494.0 512.9 531.8 550.8	336.8 349.2 361.6 374.0	246.1 254.9 263.7 272.5	188.7 195.2 201.8 208.4	150.1 155.3 160.4 165.5	12 12 12	23.1 27.2 31.4 35.5	103.5 106.9 110.4 113.8	88.87 91.79 94.71 97.63	77.75 80.28 82.81 85.34	69.19 71.42 73.65 75.88	62.57 64.57 66.57 68.57	57.50 59.32 61.15 62.97	53.74 55.44 57.13 58.83	51.26 52.86 54.47 56.08	50.28 51.85 53.42 54.99
18.0 .5 19.0 .5	18 240 19 800 21 460 23 200	4 870 5 097 5 327 5 558	1 796 1 865 1 935 2 004 1	929.8 962.5 995.3 028	569.8 588.8 607.8 626.8	386.4 398.8 411.2 423.6	281.3 290.1 298.9 307.8	215.0 221.6 228.2 234.8	170.7 175.8 181.0 186.1	13 14 14	39.7 43.8 48.0 52.1	117.3 120.7 124.1 127.6	100.5 103.5 106.4 109.3	87.87 90.39 92.92 95.45	78.11 80.34 82.57 84.80	70.57 72.57 74.57 76.57	64.80 66.63 68.45 70.28	60.53 62.22 63.92 65.61	57.68 59.29 60.90 62.50	56.56 58.13 59.70 61.27
20.0 .5 21.0 .5	25 040 26 970 28 990 31 120	5 791 6 026 6 262 6 499	2 074 1 2 144 1 2 214 1 2 284 1	061 094 127 160	645.9 665.0 684.0 703.1	436.1 448.5 460.9 473.4	316.6 325.4 334.2 343.1	241.4 248.0 254.6 261.2	191.2 196.4 201.5 206.7	15 16 16	56.3 50.4 54.6 58.7	131.0 134.5 137.9 141.3	112.2 115.1 118.1 121.0	97.98 100.5 103.0 105.6	87.03 89.26 91.49 93.72	78.57 80.57 82.57 84.58	72.10 73.93 75.75 77.58	67.31 69.00 70.70 72.39	64.11 65.72 67.33 68.93	62.84 64.41 65.98 67.55
22.0 .5 23.0 .5	33 350 35 680 38 110 40 660	6 738 6 978 7 219 7 462	2 354 1 2 424 1 2 495 1 2 565 1	193 226 259 292	722.3 741.4 760.5 779.7	485.8 498.3 510.8 523.2	351.9 360.8 369.6 378.4	267.8 274.4 281.0 287.6	211.8 217.0 222.1 227.3	17 17 18	72.9 77.1 31.2 35.4	144.8 148.2 151.7 155.1	123.9 126.8 129.8 132.7	108.1 110.6 113.2 115.7	95.95 98.18 100.4 102.6	86.58 88.58 90.58 92.58	79.40 81.23 83.06 84.88	74.09 75.78 77.48 79.17	70.54 72.15 73.75 75.36	69.12 70.69 72.26 73.83
24.0 .5 25.0 .5	43 320 46 080 48 970 51 970	7 705 7 950 8 195 8 442	2 636 1 2 707 1 2 778 1 2 849 1	325 359 392 425	798.8 818.0 837.1 856.3	535.7 548.2 560.6 573.1	387.3 396.1 405.0 413.8	294.2 300.8 307.5 314.1	232.4 237.6 242.7 247.9	18 19 19 20	39.5 93.7 97.8 92.0	158.6 162.0 165.5 168.9	135.6 138.5 141.4 144.4	118.2 120.7 123.3 125.8	104.9 107.1 109.3	94.58 96.58 98.58	86.71 88.53 90.36 92.18	80.87 82.56 84.26 85.95	76.97 78.57 80.18 81.79	75.40 76.97 78.53
26.0 .5 27.0 .5	55 090 58 340 61 710 65 200	8 689 8 937 9 186 9 435	2 920 1 2 991 1 3 062 1 3 133 1	458 491 525 558	875.5 894.6 913.8 933.0	585.6 598.0 610.5 623.0	422.7 431.5 440.4 449.3	320.7 327.3 333.9 340.5	253.1 258.2 263.4 268.5	20 21 21 21	06.1 10.3 14.4	172.3 175.8 179.2 182.7	147.3 150.2 153.1 156.0	128.3 130.9 133.4 135.9	113.8 116.0 118.2 120.5	102.6 104.6 106.6	94.01 95.83 97.66 99.48	87.65 89.34 91.04 92.73	83.39 85.00 86.60 88.21	81.67 83.24 84.81 86.38
28.0 .5 29.0 .5	68 830 72 590 76 480 80 510	9 686 9 936 10 190 10 440	3 204 1 3 276 1 3 347 1 3 418 1	591 625 658 691	952.2 971.4 990.6 1 010	635.5 648.0 660.4 672.9	458.1 467.0 475.8 484.7	347.1 353.8 360.4 367.0	273.7. 278.8 284.0 289.1	22 22 23 23	22.8 26.9 31.1 35.2	186.1 189.6 193.0 196.4	159.0 161.9 164.8 167.7	138.5 141.0 143.5 146.0	122.7 124.9 127.2 129.4	110.6 112.6 114.6 116.6	101.3 103.1 105.0 106.8	94.42 96.12 97.81 99.51	89.82 91.42 93.03 94.63	87.95 89.52 91.09 92.65
30.0 .5 31.0 .5	84 680 88 990 93 440 98 040	10 690 10 950 11 200 11 450	-3 489 1 3 561 1 3 632 1 3 704 1	724 758 791 824	1 029 1 048 1 067 1 087	685.4 697.9 710.4 722.9	493.6 502.4 511.3 520.1	373.6 380.2 386.8 393.5	294.3 299.4 304.6 309.7	23 24 24 25	39.4 3.5 7.7 51.8	199.9 203.3 206.8 210.2	170.7 173.6 176.5 179.4	148.6 151.1 153.6 156.1	131.6 133.9 136.1 138.3	118.6 120.6 122.6 124.6	108.6 110.4 112.3 114.1	101.2 102.9 104.6 106.3	96.24 97.84 99.45 101.1	94.22 95.79 97.36 98.93

4 5 ⁰	50 ⁰	55 ⁰	60 ⁰	65 ⁰	70 ⁰	75 ⁰	80 ⁰	85 ⁰	90 ⁰	μR
73.51	62.33	53.91	47.46	42.46	38.59	35.61	33.42	31.98	31.44	10.0
77.63	65.75	56.82	49.98	44.69	40.58	37.43	35.11	33.59	33.01	.5
81.75	69.17	59.72	52.50	46.91	42.58	39.26	36.80	35.19	34.58	11.0
85.87	72.60	62.63	55.02	49.14	44.58	41.08	38.49	36.80	36.15	.5
90.00	76.02	65.55	57.55	51.36	46.58	42.90	40.19	38,40	37.72	12.0
94.13	79.45	68.46	60.07	53.59	48.57	44.73	41.88	40.01	39.29	.5
98.26	82.88	71.37	62.59	55.82	50.57	46.55	43.58	41.62	40.86	13.0
02.4	86.32	74.29	65.12	58.05	52.57	48.38	45.27	43.22	42.43	.5
06.5	89.75	77.20	67.65	60.27	54.57	50.20	46.97	44.83	44.00	14.0
10.7	93.19	80.12	70.17	62.50	56.57	52.02	48.66	46.43	45.57	.5
14.8	96.62	83.04	72.70	64.73	58.57	53.85	50.35	48.04	47.14	15.0
19.0	100.1	85.95	75.23	66.96	60.57	55.67	52.05	49.65	48.71	.5
23.1	103.5	88.87	77.75	69.19	62.57	57.50	53.74	51.26	50.28	16.0
27.2	106.9	91.79	80.28	71.42	64.57	59.32	55.44	52.86	51.85	.5
31.4	110.4	94.71	82.81	73.65	66.57	61.15	57.13	54.47	53.42	17.0
35.5	113.8	97.63	85.34	75.88	68.57	62.97	58.83	56.08	54.99	.5
39.7	117.3	100.5	87.87	78.11	70.57	64.80	60.53	57.68	56.56	18.0
43.8	120.7	103.5	90.39	80.34	72.57	66.63	62.22	59.29	58.13	.5
48.0	124.1	106.4	92.92	82.57	74.57	68.45	63.92	60.90	59.70	19.0
52.1	127.6	109.3	95.45	84.80	76.57	70.28	65.61	62.50	61.27	.5
56.3	131.0	112.2	97.98	87.03	78.57	72.10	67.31	64.11	62.84	20.0
60.4	134.5	115.1	100.5	89.26	80.57	73.93	69.00	65.72	64.41	.5
64.6	137.9	118.1	103.0	91.49	82.57	75.75	70.70	67.33	65.98	21.0
68.7	141.3	121.0	105.6	93.72	84.58	77.58	72.39	68.93	67.55	.5
72.9	144.8	123.9	108.1	95.95	86.58	79.40	74.09	70.54	69.12	22.0
77.1	148.2	126.8	110.6	98.18	88.58	81.23	75.78	72.15	70.69	.5
81.2	151.7	129.8	113.2	100.4	90.58	83.06	77.48	73.75	72.26	23.0
85.4	155.1	132.7	115.7	102.6	92.58	84.88	79.17	75.36	73.83	.5
89.5	158.6	135.6	118.2	104.9	94.58	86.71	80.87	76.97	75.40	24.0
93.7	162.0	138.5	120.7	107.1	96.58	88.53	82.56	78.57	76.97	.5
97.8	165.5	141.4	123.3	109.3	98.58	90.36	84.26	80.18	78.53	25.0
02.0	168.9	144.4	125.8	111.6	100.6	92.18	85.95	81.79	80.10	.5
D6.1	172.3	147.3	128.3	113.8	102.6	94.01	87.65	83.39	81.67	26.0
10.3	175.8	150.2	130.9	116.0	104.6	95.83	89.34	85.00	83.24	.5
14.4	179.2	153.1	133.4	118.2	106.6	97.66	91.04	86.60	84.81	27.0
18.6	182.7	156.0	135.9	120.5	108.6	99.48	92.73	88.21	86.38	.5
22.8	186.1	159.0	138.5	122.7	110.6	101.3	94.42	89.82	87.95	28.0
26.9	189.6	161.9	141.0	124.9	112.6	103.1	96.12	91.42	89.52	.5
31.1	193.0	164.8	143.5	127.2	114.6	105.0	97.81	93.03	91.09	29.0
35.2	196.4	167.7	146.0	129.4	116.6	106.8	99.51	94.63	92.65	.5
39.4	199.9	170.7	148.6	131.6	118.6	108.6	101.2	96.24	94.22	30.0
43.5	203.3	173.6	151.1	133.9	120.6	110.4	102.9	97.84	95.79	.5
47.7	206.8	176.5	153.6	136.1	122.6	112.3	104.6	99.45	97.36	31.0

des Interpolationspolynoms vom Grade m=4 ein solches vom Grade m=2 benutzt, so wäre mit $a_4=a_3=0$ in Gl.(6), die Genauigkeit nur unwesentlich zurückgegangen; im Gebiet grosser μR und grosser θ läge dann der Fehler in der Grössenordnung 1 ‰ (Fig. 2).

5. Die Kontrolbrechnung (Programmbezeichnung MBT5)

Zur Überprüfung der Tafelgenauigkeit für $\theta \neq 0^{\circ}$ wurde ein weiteres Integrationsverfahren herangezogen.

Ausgehend von der Gleichung (9) auf S. 291 der International Tables Bd.2 (1959), liefert die Transformation

$$x = \cos \alpha$$
$$y = \cos \alpha \, \mathrm{tg} \, \beta$$

für die Weglänge $l = l_1 + l_2^+ + l_2^-$ die Ausdrücke

$$l_1/R = 2 \cos \alpha \sin \theta (l_2^{\pm}/R)^2 = 1 - [\cos \alpha \cos(\theta \pm \beta)/\cos \beta]^2.$$
(7)

Speziell für $\theta = 0^{\circ}$ wird die Absorption nunmehr durch das Integral

$$A(\theta) = 2/\pi \int_0^{\pi/2} \sin^2 \alpha \, \exp(-2\mu R \sin \alpha) d\alpha \tag{8}$$

beschrieben. Dieses Integral ist numerisch einfach auszuwerten; es lieferte die 'genauen' Absorptionswerte für die Konvergenzbetrachtung des Abschnittes 3.

Der auf $\theta \neq 0$ erweiterte Ausdruck

$$A_{MBT5}(\theta) = 1/\pi \int_{0}^{\pi/2} \cosh(\mu l_1) d\alpha \int_{0}^{\alpha} (\sin 2\alpha / \cos^2 \beta) \exp[-\mu (l_2^+ + l_2^-)] d\beta \quad (9)$$

konvergiert für kleine θ noch recht gut, sodass man bei der numerischen Auswertung erträgliche Rechenzeiten erhält. Für die hier benutzte Intervallteilung $(\Delta \alpha = \pi/72, \Delta \beta = \pi/576 \text{ für } \beta \le 82^{\circ} \text{ und } \Delta \beta = \pi/1152 \text{ für } \beta > 82^{\circ})$ wurde auf einer IBM 7090 *ca.* 0,17 min je Absorptionswert benötigt; das entspricht einem etwa 400 mal grösseren Zeitverbrauch als bei dem unter Abschnitt 4 behandelten Verfahren *MBT*9.

Mit der Integration (9) wurden Querkontrollen für $0^{\circ} \le \theta \le 90^{\circ}$ bei den Parameterwerten $\mu R = 1$, 2 und 4 sowie Längskontrollen $0 \le \mu R \le 20$ für $\theta = 5^{\circ}$, 10° und 15° durchgeführt. Diese Kontrollen zeigten, dass die Genauigkeit der bisher verfügbaren ΔS_k -Tabelle nicht ausreichte. Bereits die Rundungseinflüsse brachten störende Fehler in die Tabellenwerte (Fig. 3); eine Neuberechnung war daher notwendig. Das dabei benutzte Rechenverfahren (Programmbezeichnung *MBT*11) ist in Abschnitt 2 beschrieben.

Die vorliegende Arbeit wurde, im Rahmen eines Programmes zur Strukturuntersuchung von Tsumebmineralien, mit Unterstützung der Deutschen Forschungsgemeinschaft durchgeführt. Für die numerischen Auswertungen stand die IBM-Anlage 7090 des Deutschen Rechenzentrums, Darmstadt zur Verfügung. Beiden Institutionen sei an dieser Stelle für die gewährte Hilfe herzlich gedankt.

Literatur

- BOND, W. L. (1959). Acta Cryst. 12, 375; vgl. International Tables, Bd. 2, 192.
- COPPENS, P., LEISEROWITZ, I. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035.
- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.
- WEBER, K. (1963). Acta Cryst. 16, 535.